Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system.
نویسندگان
چکیده
UNLABELLED Hybrid PET/MR combines the exceptional molecular sensitivity of PET with the high resolution and versatility of MR imaging. Simultaneous data acquisition additionally promises the use of MR to enhance the quality of PET images, for example, by respiratory motion correction. This advantage is especially relevant in thoracic and abdominal areas to improve the visibility of small lesions with low radiotracer uptake and to enhance uptake quantification. In this work, the applicability and performance of an MR-based method of respiratory motion correction for PET tumor imaging was evaluated in phantom and patient studies. METHODS PET list-mode data from a motion phantom with (22)Na point sources and 5 patients with tumor manifestations in the thorax and upper abdomen were acquired on a simultaneous hybrid PET/MR system. During the first 3 min of a 5-min PET scan, the respiration-induced tissue deformation in the PET field of view was recorded using a sagittal 2-dimensional multislice gradient echo MR sequence. MR navigator data to measure the location of the diaphragm were acquired throughout the PET scan. Respiration-gated PET data were coregistered using the MR-derived motion fields to obtain a single motion-corrected PET dataset. The effect of motion correction on tumor visibility, delineation, and radiotracer uptake quantification was analyzed with respect to uncorrected and gated images. RESULTS Image quality in terms of lesion delineation and uptake quantification was significantly improved compared with uncorrected images for both phantom and patient data. In patients, in head-feet line profiles of 14 manifestations, the slope became steeper by 66.7% (P = 0.001) and full width at half maximum was reduced by 20.6% (P = 0.001). The mean increase in maximum standardized uptake value, lesion-to-background ratio (contrast), and signal-to-noise ratio was 28.1% (P = 0.001), 24.7% (P = 0.001), and 27.3% (P = 0.003), respectively. Lesion volume was reduced by an average of 26.5% (P = 0.002). As opposed to the gated images, no increase in background noise was observed. However, motion correction performed worse than gating in terms of contrast (-11.3%, P = 0.002), maximum standardized uptake value (-10.7%, P = 0.003), and slope steepness (-19.3%, P = 0.001). CONCLUSION The proposed method for MR-based respiratory motion correction of PET data proved feasible and effective. The short examination time and convenience (no additional equipment required) of the method allow for easy integration into clinical routine imaging. Performance compared with gating procedures can be further improved using list-mode-based motion correction.
منابع مشابه
Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications.
UNLABELLED Simultaneous PET and MR imaging is a promising new technique allowing the fusion of functional (PET) and anatomic/functional (MR) information. In the thoracic-abdominal regions, respiratory motion is a major challenge leading to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of gated frames that lead to low signal-to-noise ratio consider...
متن کاملTechnical Challenges & Opportunities of PET/MR: An Overview
Following PET/CT, PET/MR is the newest diagnostic whole-body hybrid imaging modality. Simultaneous PET and MR data acquisition requires novel technical solutions and offers new diagnostic opportunities. Attenuation correction (AC) and motion correction (MC) of PET data are current hot topics in PET/MR hybrid imaging research. The added diagnostic value of PET/MR in whole-body imaging is current...
متن کاملNon rigid respiratory motion correction in whole body PET/MR imaging
INSERM UMR1101, LaTIM, Brest, France Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted...
متن کاملA 3D MR-acquisition scheme for non-rigid bulk motion correction in simultaneous PET-MR
PURPOSE Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide ...
متن کاملRecent Advances in PET-MR Hybrid contrast agent
Introduction: All of the Imaging modalities have advantages and disadvantages alone. So if we want to have the best and perfect image, combining these modalities produces something we desired. PET-MR images consist of morphologic and metabolic data. MRI and PET provide high spatial and contrast resolution and high sensitivity and molecular information respectively. Hybrid PET-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2013